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Abstract. An efficient algorithm based on flux difference splitting is presented for the solution of the three-
dimensional Euler equations of gas dynamics in a generalised coordinate system with a general equation of state.
The scheme is based on solving linearised Riemann problems approximately and in more than one dimension
incorporates operator splitting. The algorithm uses a local parameterisation of the equation of state and as a
consequence requires only one function evaluation in each computational cell. The scheme has good shock
capturing properties and the advantage of using body-fitted meshes. Numerical results are shown for Mach 8 flow
of "equilibrium air" past a circular cylinder.

1. Introduction

In 1981 Roe [1] proposed an approximate (linearised) Riemann solver for the solution of the
three-dimensional Euler equations in Cartesian coordinates with an ideal gas. A similar
scheme was proposed by Glaister [2] for the Euler equations in Cartesian coordinates with
general convex equations of state. A disadvantage of Glaister's scheme is that four function
evaluations are required in each computational cell to approximate the first derivatives of
the equation of state. For complex equations of state, e.g., curve fits for equilibrium air [3]
this can prove to be an expensive overhead. We seek here to devise a scheme that requires
only one function evaluation in each cell with no deterioration in the quality of the solution.
This is achieved by a local parameterisation of the equation of state, in effect a "variable
effective gamma" (VEG) scheme. Furthermore, the proposed scheme applies to a generalised
coordinate system, and when incorporated with operator splitting leads to an efficient
algorithm that has good shock-capturing properties and the advantage of using body-fitting
meshes.

In Section 2 we consider the Jacobian matrix of one of the flux functions for the Euler
equations in a generalised coordinate system, and in Section 3 derive an approximate
Riemann solver for the solution of these equations. Finally, in Section 4 we give the numerical
results achieved for a two-dimensional test problem using the scheme of Section 3.

* This work forms part of the research programme for the Institute of Computational Fluid Dynamics at
the Universities of Oxford and Reading and was funded by AWRE, Aldermaston under Contract No.
NSN/13B/2A88719.
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2. Euler equations

In this section we state the equations of motion for an inviscid, compressible fluid in three
dimensions in terms of three generalised space coordinates. We also give the eigenvalues and
eigenvectors of the Jacobian matrix of one of the corresponding flux functions.

2.1. Equations of flow

The three-dimensional Euler equations for the flow of an inviscid, compressible fluid can be
written in generalised coordinates X, q, i as

(Jw), + F + G, + H = 0, (1)

where

W = (e' u, ev, ew, e)T, (2)

F(w) = (QU, J p + euU, J[p + ovU, J'p + owU, U(e + p))T, (3)

G(w) = (eV, J~,p + euV, J p + evV, Jzp + wV, V(e + p))T, (4)

H(w) = (eW, J p + uW, J'p + QeW, Jcp + wW, W(e + p))T, (5)

e = Qi + Qe(u2 + V
2

+ w2 ) (6)

and

U = J: u + J v + J w, (7)

V = Jj u + J v + J w, (8)

W = J u + Jv + Jw. (9)

The Jacobian of the grid transformation x = x(4, ,/, ), y = y(., , ), z = z(, q, C) from
Cartesian coordinates (x, y, z) to generalised coordinates (6, , ) is given by

J = x, yq ZY, (10)

xc yC zc

whilst the cofactors of this matrix are represented by Jx etc. The cofactor of xc is given by

J4 = yz - zy, (11)

with similar expresions for JY etc. The quantities (, u, v, w, p, i, e) = (, u, v, w, p, i, e)
(d, , C, t) represent the density, velocity in the x, y and z coordinate directions, pressure,
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specific internal energy and total energy, respectively, at a general position , , in space

and time t. In addition we have an equation of state of the form

p = p(Q, i). (12)

2.2. Structure of the Jacobian matrix

We now give the Jacobian matrix of the flux function F(w), and its eigenvalues and
eigenvectors, since this information, together with similar information for the Jacobian
matrices of G(w) and H(w), will form the basis for the approximate Riemann solver.

The Jacobian matrix A = aF/Ow of the flux function F(w) is given by

Jx0 J

RJ - uU U +uS uSJY-vTJx

RJy - vU VJX - uTJY U + vSJY

RJz - wU wJ; - uTJz wJY - vTJ,

U(R - H) HJ - uUT HJ - vUT

J;

uJZ - wTJ;x

vJ1 - wTJY

U + wSJ;

HJz - wuT

where for convenience we have written

R = a2 P(H - q2),

S 1P
Q

T =P
e

The fluid speed q, enthalpy H and sound speed a are given by

q2 = u2 + 2 + W2,

H = + i + q2,

and

a2 = PP+
a +p'

A =

0

TJ

TJy

TH

U+ UT

(13)

(14)

(15)

(16)

(17)

(18)

(19)

19
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and the quantities pi, p, denote the derivatives Op(Qi)ail, i)/ip , (, i)/ap, respectively. The
eigenvalues of A are given by

21,2,3,4,5 = U + aD, U, U, U, (20a-e)

with corresponding linearly independent eigenvectors

= / aJ aJb aJ) aU(T

e,,v2 = 1, u + Dj v+ D w -D+ a H-+ D ) '(21a-b)

e3 = (1,uv, U V, q2 +i QP)(21c)

e4 = (0, -J[y, J, O, vJ - UJ[ )T (21d)

and

e5 = (0, -Jz, 0, Jo, wJx ' - UJz)T, (21e)

where

D = /(J) 2 + (J[)2 + (j/) 2 . (22)

Similar results hold for the Jacobian matrices of G(w) and H(w).
In the next section we develop an approximate Riemann solver based on the results of this

section.

3. Approximate Riemann solver

In this section we derive an approximate Riemann solver for the solution of equations
(1)-(12).

We propose solving equations (1)-(12) using operator splitting, i.e., we solve successively

(Jw), + F = 0, (23a)

(Jw), + G = 0, (23b)

(Jw), + H = 0 (23c)

along 6, q and coordinate lines, respectively. We describe the scheme for solving equation
(23a) and the solution of equations (23b) and (23c) will follow in a similar way.

3.1. Parameterisation of the equation of state

The equation of state for an ideal gas is given by

P = ( - 1)Qi (24)
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where y is a constant and represents the ratio of specific heat capacities of the fluid.
Following this, for a general equation of state p = p(Q, i) we define a new dependent
variable y = 7(Q, i) by

(, i) = ( i) + 1, (25)oi

so that the equation of state (12) can be rewritten as

= (Y(e, i) - l)ei. (26)

(Many equations of state for real gases are already given in the form of equation (26). The
ideal equation of state is given by y _ constant.)

From equation (25), the eigenvectors e, 2 of equations (21a-b) can be rewritten in terms
of y as

eaa,2 =1, u+,__aJ- aJw aJO,( p aU1
e (= 2 u + + + + 'q2 + - ) (27a-b)e1 2 D - D '(y - I)e 2 - D 

In particular, for the ideal equation of state (24) the sound speed a is given by equation (19)
as

a2 = YP (28)
Q

and the fifth component of e3, given by equation (21c), becomes q2 since i - Qp,/pi = 0.

3.2. Linearised Riemann problem

If the solution of equation (23a) is sought along a coordinate line given by = %O, C = 0,
constants, using a finite-difference method then the solution is known at a set of discrete
mesh points (, , , t) = (j, rl, Co,tn) at any time t,. Following Godunov [4] the approxi-
mate solution w to w at (j, %O, C0, t) can be considered as a set of piecewise constants
w = w? for e (j , j- + 1A,) at time t, where A = - , is a constant mesh
spacing. A Riemann problem is now present at each interface 5jil/2 = (j - + j) separat-
ing adjacent states w,_,l, wj. We consider solving the linearised Riemann problem

(Jw), + A(wj_,, wj;)w = 0 (29)

where A _ 1/ 2 = (w_ , w ) is an approximation to the Jacobian matrix A and is a constant
matrix depending on the states either side of j-1/2. The matrix A,1/2 will be required to
satisfy the following properties

(i) A-,/2 has five linearly independent eigenvectors

and

(ii) AF = Aj_ 1 /2Aw.

21
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These properties were shown by Roe [1] in the ideal-gas case in Cartesian coordinates to
guarantee conservation and have good one-dimensional shock-capturing properties.

3.3. Numerical scheme

Once such a matrix has been constructed equation (29) can be solved approximately as

(wk + ' - w)+ (w? - w -n_1)

j- 1/2- + A --1 2 0 (30)

where k can bej - 1 orj, At = t+ 1 - t, is a constant time step and Jj_1/2 is an approxi-
mation to the grid Jacobian at (, , ) = (-,/2, O, 0). If we project

5

Aw = W - wj_ = a,ri (31)
i=1

where ri are the eigenvectors of Aj, -/2, then equation (30) can be written as

5

Jj - 1/2 ) + i = 0 (32)At +1

where Xi are the eigenvalues of Aj-_/2. Equation (32) now gives rise to the following
first-order upwind algorithm.

wjn+ = w - Xiaifi if i < 0, (33a)

or

n+ = jn At Xiai if Xi > 0. (33b)

Extensions of this first-order algorithm to second order can be made [5] and to non-uniform
grids [6, 7].

3.4. Grid generation and grid Jacobian

The purpose of this paper is to present an efficient Riemann solver for use with non-
Cartesian body-fitted coordinates. The mapping from physical (x, y, z) space to compu-
tational (, , C) space can be given analytically, or constructed numerically [8]. In the case
where the mapping x = x(, q?, C), y = y(, , ), z = z(, , ) is known analytically we
can approximate Jj_,/2 in equation (30) as

J-1/2 = J(r-1/2, 10, o); (34)
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alternatively, J- /2 can be approximated using central differences. In addition, we will need
a suitable approximation x-'12 for x, at (j-1/2', Co, C0) and in the analytic case we take

XI - 1/2 = X,(s-11/ 2 , 1, 0) ) (35)

as in equation (34); otherwise we set x- /2 to be the arithmetic mean of central difference
approximations to x, at (j _, Co, o) and (j, to, o). Similar approximations hold for y,, xe,
x; etc., and these give rise to an obvious approximation (Jx)i-1/ 2 for J, etc.

3.5. Construction of A_ 1 / 2

Consider a coordinate line given by ? = 0, r = r0, constants, and denote points 5j-, 5j
on this line by 5L, 5R, respectively. In addition, we denote wjn_ = WL, Wij = WR, and assume
that X = (J)- 1/2 , Y = (J)ij-112 and Z = (Jo)1 -1/2 denote approximations to J,, J and
Jz, respectively, that are constant in the interval (L, R). Our aim is to construct a matrix
Aji-1/2 = A(WL, WR) satisfying properties (i) and (ii) of Section 3.2. Equivalently, we could
find average eigenvalues 2i and average eigenvectors ii of the eigenvalues and eigenvectors
of the Jacobian matrix A at L, R given by equations (20a)-(22) such that

Aw = E iri (36a-e)
i=l

and

5

AF = E iairi (37a-e)
i=i

for some wavestrengths &i, where

A() = (')R - ()L. (38)

This yields the following approximate Jacobian matrix

Aj _ 11 2 = Mji1/2Di1 /2Mig/2 (39)

with the required properties, where Mj_,/2 = [, 2, 3, r4 , 5] and D1/2 =
diag(,, 2, 2, , , 2). The choice of wavestrengths in equations (36a-36e) is made by
initially considering states WL and WR that are close to some average state w as follows.

3.5. Wavespeeds for nearby states

Consider two (constant) adjacent states WL, WR (left and right) close to an average state w,
at points L and R on a -coordinate line. In particular, the variable y given by equation (25)
is piecewise constant. Now in view of the sound speed a for ideal gases (y - constant) given
by equation (28) and the eigenvectors e, 2 given by equations (27a-b), we assume that we have

23
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approximate eigenvectors

( aX aY aZ a2
+ (U2 + 2 + 2) ± aU (40ab

where X, Y and Z are described in Section 3.5,

d = x 2 + 2 + z 2 (41)

and

U = Xu + Yv + Zw (42)

corresponding to the average state w. (N.B. The quantity y in equations (40a-b) represents an
average value close to YL and YR.) In addition, because i - QPQ/Pi = 0 for an ideal gas, we
split e3 into two vectors as

r; = (1, u, v, w, (u2 + v2 + W2))T (43)

and

r6 = (0,0, 0, 0, Of)T, (44)

where B represents an average value in the cell (L, 5R) of i - Qp /pi. Finally, we approxi-
mate e4,5 as

r4 = (0, - Y, X, 0, Xv - YU)T (45)

and

r5 = (0, -Z 0, X, Xw - Zu)T. (46)

We seek coefficients a,, a2, a3, 04, 05 such that

Aw = Oalr, + a2r2 + 3 r3 + a4r4 + 0a5r5 + r (47)

to within O(A2). (N.B. The vector r' is considered separately since it vanishes for an ideal
gas. Also, we do not introduce another coefficient a6 since r6 has only one non-zero com-
ponent and is therefore not required.) After some manipulation we find that equation (47)
yields the following expressions for ci and /

a1,2 = 2a2 ±AP + d d) (48a-b)

Ap
[3 = A - (48c)

a2 ,
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a4 = Av _ YAU (48d)
X d2 X'

QAw _ ZAU 
e°rs - X (48e)X d2X

and

/P giAy (49)
V- '

where we have made the assumption that to within O(A2)

A(QN) = NA + QAN, N = u, v or w, (50a-c)

A(gN 2) = N 2Ac + 2QNAN, N = u, v or w, (51a-c)

and

( _Y_ -1 (y- 1(52)

The results above imply an approximation to the eigenvector e3 given by r3 = r3 + r/a 3, i.e.

r3 = 1, U, v, W, (U2 + V2 + W2) _ (53)

and hence an approximation to i - pl/Pi. With the expressions given above it is possible
to show that

5

AF = E Ajir (54)
i=1

to within O(A2 ). We now return to the general case.

3.7. Decomposition for general wL, WR

Consider two states WL, WR not necessarily close such that equations (36a)-(37e) are satisfied
exactly, where

2. = _+ d, U, U, U, (55a-e)

( +- + +-Y + fiZ a2 + T2axray, 1 + 2 =+ 1 ii2 + 1 d2 1 fV2 + au)u a d d2 2 d' --

(56a-b)

25
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r3 = ( , uv, w, (2 + 2 + f2) _ (56c)

P4 = (0, - Y, X, 0, X - Y), (56d)

5 = (0 -Z, 0, X, X,, - Zi) T , (56e)

a1,2 = (Ap + ud ) (57a-b)

3 = AQ Ap (57c)

OAv OYAU
4 X d2 X ' (57d)

OAw OZAU
s = X d2X' (57e)

U= X + Y + Zfi, (58)

P(Q, i)y = --, + 1 (59)
Qi

and

AU = A(Xu + Yv + Zw) = XAu + YAv + ZAw. (60)

(N.B. X, Y and Z are constant in (L, 'R.) Thus, we have to determine averages , ii, , w,
a, i, and y such that equations (36a)-(37e) are satisfied subject to equations (55a)-(60). The
solution to this problem can be determined and gives the following averages

_ JLNL+xfEN
N x-N L + R N = u, v, w, i, y or H, (61a-f)

vg + '/0,

0 = /LR, (62)

a2 = (y- 1)[H- (i2 + v2 + 2)]. (63)

where

H = P- + i + (u2 + v2 + w2) (64)

(y 1 + (u 2 +v 2 + w2 )

is the enthalpy.
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Similar results hold for updating in the and directions.
In the next section we give the numerical results for a test problem using the algorithm of

this section.

4. Numerical results

In this section we give the numerical results for a standard test problem in two-dimensional
gas dynamics using the Riemann solver described in Section 3.

The problem is that of uniform flow of "real air" past a circular cylinder. The equation
of state used can be written as

P = ((e, i) - 1)oi

where the form of y(e, i) is determined via curve fits to experimental data [3]. The radius
of the cylinder is 0.5 and the initial conditions are = 1.4, u = 8.0, v = w = 0.0, p = 1.0
which corresponds to Mach 8 flow. An O-type computational mesh is used and thus the grid
transformation is from (x, y, z) physical space to ( , C, r) _ (R, , z) computational space,
where R, , z are standard cylindrical polar coordinates. The region of computation
considered is (R, ) e [0.5, 20] x [0, 27r] and we apply periodic conditions along = 0.

The grid spacing in the +-direction is uniform with 128 grid lines given by Oj = (j - )r/128,
j = 1, ... 128. In the R-direction the grid spacing is geometric with 33 grid lines given
by R = 0.5 + k, r = R_ + k 2 , j = 2,..., 33, where k = r/128 and =
1.1648336. Figure 1 displays the isomach contours for Mach 8 flow after 1000 time steps

Fig. 1. Isomach contours for Mach 8 flow in 0.5. R 5.0. There are 31 contours corresponding to an equal
spacing of the interval from Mach 0 to Mach 8.

27
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in the same region. We note, however, the slight asymmetry of Figure 1 which is a result of
using an operator split scheme, i.e. one which is not genuinely two-dimensional.

In all cases the shock has been captured over at most three cells.

5. Conclusions

We have presented an efficient Riemann solver for three-dimensional compressible flows
using body-fitted coordinates. The scheme applies to a general convex equation of state and
by using a local parameterisation of the equation of state, only one function call is required
per one-dimensional computational cell. The numerical results achieved show that the shock
has been captured over two or three _Ils.
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